Research indicates that the dyslexic’s brain differs from that of a “normal” reader. Does this mean that dyslexia is caused by a neurological dysfunction or is there an alternative interpretation that explains these differences? Many methods and measuring instruments have so far been employed to either prove or disprove that dyslexia has a biological basis, ranging from autopsies on the brains of deceased dyslexics, to advanced technological tools such as the computerized axial tomography (CAT) scan, magnetic resonance (MR) imaging, functional magnetic resonance imaging (fMRI), positron emission tomography (PET), and single photon emission computerized tomography (SPECT). While researchers still differ in opinion about the affected brain area(s), the majority nowadays agrees that the dyslexic’s brain differs from that of a “normal” reader. Booth and Burman found that people with dyslexia have less gray matter in the left parietotemporal area than nondyslexic individuals. Deutsch et al. found that many people with dyslexia also have less white matter in this same area than average readers, which is important because more white matter is correlated with increased reading skill. Having less white matter could lessen the ability or efficiency of the regions of the brain to communicate with one another. Using functional magnetic resonance imaging (fMRI), NIH scientists Guinevere Eden, D.Phil., and colleagues demonstrated in a small controlled study of adult males that people with dyslexia showed no activation in the V5/MT brain area, which specializes in movement perception. Dr. Eden’s research confirms that people with dyslexia, hobbled by problems with reading, writing, and spelling, have trouble processing specific visual information. “We found that maps of brain activity measured while subjects were given a visual task of looking at moving dots were very different in individuals with dyslexia compared to normal control subjects,” said Dr. Eden. The control subjects showed robust activity in brain region V5/MT when viewing a moving dot pattern. Almost no activity was present in those areas in people with dyslexia. The problem is that such observations have to be interpreted, especially in relation to the question of cause and effect. Which of the two, the brain differences or the reading disability, is the cause and which one is the effect? Because of the biological determinists’ reluctance to recognize that the environment can affect brain function and structure, they assume that these differences must be the cause and the reading disability the result. Some maintain that the brain develops in definite stages. They call these stages “critical periods” in brain development: if you haven’t learned the skill by then, you never will. They maintain that this is because as the brain develops, certain circuits are set up which cannot be changed. We, however, hypothesize that dyslexia causes differences in brain function and structure, and that the brain structure and function will change if the dyslexic person is taught to read properly. A logical point of departure for such an argument would be to first establish if brain function and structure could be altered. There is ample confirmation in the literature that indeed it can. The Brain CAN Change, Experts Say In 1979 already, in an article in the Journal of Learning Disabilities, Doctors Marianne Frostig and Phyllis Maslow stated, “Neuropsychological research has demonstrated that environmental conditions, including education, affect brain structure and functioning.” In their book Brain, Mind, and Behavior Floyd E. Bloom, a neuropharmacologist, and Arlyne Lazerson, a professional writer specializing in psychology, state, “Experience [learning] can cause physical modifications in the brain.” This is confirmed by Michael Merzenich of the University of San Francisco. His work on brain plasticity shows that, while areas of the brain are designated for specific purposes, brain cells and cortical maps do change in response to experience (learning). Recently, German researchers found that juggling increases the size of your brain. Arne May, neurologist at the University of Regensburg, and colleagues asked 12 people in their early 20s, most of them women, to learn a classic three-ball juggling trick over three months until they could sustain a performance for at least a minute. Another 12 were a control group who did not juggle. All the volunteers were given a brain scan with magnetic resonance imaging at the start of the program, and a second after three months. After this, the juggling group was told not to practice their skills at all for three months, and then a third scan was taken of all 24 volunteers. The scans found that learning to juggle increased by about three percent the volume of gray matter in the mid-temporal area and left posterior intra-parietal sulcus, which are parts of the left hemisphere of the brain that process data from visual motion. Students who had not undergone juggling training showed no such change. After the third scan, by which time many recruits had forgotten how to juggle, the increases in gray matter had partly subsided. “Our results contradict the traditionally held view that the anatomical structure of the adult human brain does not alter, except for changes in morphology caused by aging or pathological conditions,” their study says. Researchers at University College London studied the brains of 105 people, 80 of whom were bilingual, and found that learning a new language altered gray matter the same way exercise builds muscles. Gaser and Schlaug found gray matter volume differences in motor, auditory, and visual-spatial brain regions when comparing professional musicians with a matched group of amateur musicians and non-musicians. Gray matter (cortex) volume was highest in professional musicians, intermediate in amateur musicians, and lowest in non-musicians. It seems that, while stimulation causes brain growth on the one hand, the lack of stimulation, on the other hand, causes a lack of brain growth. Doctors Bruce D. Perry and Ronnie Pollard, two researchers at Baylor College of Medicine, found that children raised in severely isolated conditions, where they had minimal exposure to language, touch and social interactions, developed brains 20 to 30 percent smaller than normal for their age. Let us now theorize on these findings and compare the development of